

Strainsert Load Pin Sensor Troubleshooting Guide

An AS9100 (including ISO 9001) Certified Company

Strainsert Load Pin Sensor Troubleshooting Guide

PHYSICAL INSPECTION

- 1. Inspect the sensor for physical damage, cracks bending, distortion, corrosion, etc.
- 2. Inspect connector and receptacle pins and sockets for damage (loose or bent) or contamination from debris or moisture.
- 3. Inspect cable thoroughly for damage, such as cuts, nicks, bent, or pinched wiring. A cable bend greater than 60° could cause short readings.
- 4. Verify good connections at any intermediate wire terminations between the load sensor and facility instrumentation.

ZERO LOAD MEASUREMENT (Use Existing DAQ or Strain Meter)

1. Observe the load pin bridge readings while under no load. If the load is drifting or the unloaded readings are greater than 5% of the full-scale output, this may indicate a problem with the sensor. Please note this "zero" magnitude can change slowly over time and is normal in strain gage bridges.

FOR NON-AMPLIFIED SENSORS

BRIDGE RESISTANCE MEASUREMENT (Using a Digital Multimeter)

- 1. Disconnect all Load Pin cable wires at instrumentation termination point.
- 2. Set the Digital Multimeter (DMM) to measure "Ohms".
- 3. With the DMM, measure and record resistance readings using the pin assignments provided in the customer wiring diagram or control drawing in accordance with Table 1:

Standard Single / Dual / Bi-Axial Bridge Description for Cable Wire Colors Resistance, Ohms (For Custom Wiring see your data package for all Bridge Connections)

Table 1

<u>1001C 1</u>						
Description	Standard	Standard Cable	Nominal Resistance (Ohms)			
	Connector Pins	Wire Colors	±9 ohms			
Standard Single Bridge:						
Excitation (+) / Excitation (-)	A/D	Red / Black	350(*)			
Signal (+) / Signal (-)	B/C	Green / White	350			
Excitation (+) / Signal (+)	A/B	Red / Green	265			
Excitation (+) / Signal (-)	A/C	Red / White	265			
Excitation (-) / Signal (+)	D/B	Black / Green	265			
Excitation (-) / Signal (-)	D/C	Black / White	265			
Standard Dual / Bi-Axial Bridge:						
Excitation (+) / Excitation (-)	E/H	Blue / Brown	350(*)			
Signal (+) / Signal (-)	F/G	Orange / Yellow	350			
Excitation (+) / Signal (+)	E/F	Blue / Orange	265			
Excitation (+) / Signal (-)	E/G	Blue / Yellow	265			
Excitation (-) / Signal (+)	H/F	Brown / Orange	265			
Excitation (-) / Signal (-)	H/G	Brown / Yellow	265			

- (*) Actual value may be as high as 15% above the nominal value due to signal trim, compensation resistors and cable resistance.
- 4. Repeat Step 1 Step 3 for bridge 2 when applicable.

LOAD PIN RAW OUTPUT SIGNAL MEASUREMENT (Using a Power Supply and Digital Multimeter)

- 1. Measurements are independent of customer strain meter / DAQ.
- 2. Connect the E+ and E- cable leads to a power supply providing between 5-12 Volts DC.
- 3. Connect the S+ and S- cable leads to a DMM and set to measure either DC Volts or DC mV (if equipped). Recommended measurement range to be in millivolts.
- 4. Standard cable color and hook ups are provided in the Table 2 below. For custom applications, please review your data package for Custom Wiring Diagrams or Control Drawings.

Standard Single Bridge Description for Pinout and Cable Colors (For Dual Bridge / Bi-Axial / Custom Wiring see your data package for all Bridge Connections)

Table 2.

Standard Cable Color	Standard Connector Pin Out	Function	Bridge Number
Red / Blue	A/E	Excitation (+)	1 / 2(*)
Green / Orange	B / F	Signal (+)	1 / 2(*)
White / Yellow	C/G	Signal (-)	1 / 2(*)
Black / Brown	D/H	Excitation (-)	1 / 2(*)

^(*) When option is available.

- 5. Power on power supply to provide voltage across E+ and E-.
- 6. Measure and record load pin sensor output signal (mV) between S- and S+ under no-load condition.
- 7. Apply a load to the sensor then repeat measurement.
- 8. Using the offset recorded in Step 6, compare output to calibration data (mV/V vs. Engineering Units)
- 9. See Strainsert Calibration Certificate for comparison.
- 10. Calibration certificates are available on the Strainsert website https://www.strainsert.com/services/online-calibration-certificate-lookup-tool/
- 11. For dual bridge and bi-axial load pin sensors repeat Steps 2 through 10 for bridge 2 if applicable.

LOAD PIN INSULATION RESISTANCE (IR) MEASUREMENT (Using a Megohm Insulation Tester)

- 1. Connect all load pin sensor wire leads to the positive side (+) lead of the insulation tester.
- 2. Connect negative (-) insulation tester lead to a secure point on the load pin sensor body.
- 3. Set insulation test voltage to 50V (maximum)
 - Warning: Insulation test voltages that exceed 50 Volts between the sensor wires and/or sensor body can cause permanent damage to the internal strain gages and will void the manufacturer's warranty.
- 4. Initiate the test using the insulation meter test button.
- 5. Verify measurement is nominally greater than 5 Giga-ohms.
- 6. If test value is less than 5 Giga-ohm contact Strainsert.
- 7. For dual bridge repeat Steps 1 Step 5 for each bridge.
- 8. **Bridge to Bridge (IR):** For dual bridge and bi-axial load pin sensors, connect bridge 1 load pin sensor wire leads to the positive side (+) lead of the insulation tester. Connect bridge 2 load pin sensor leads to the negative (-) insulation tester leads.
- 9. Repeat Step 5 through Step 7.

FOR 2-WIRE AMPLIFIED LOAD PIN SENSORS (ONLY)

LOAD PIN AMPLIFIED OUTPUT MEASUREMENT (4 to 20 mA)

- 1. Connect positive side of the power supply per Table 3.
- 2. Connect the negative side of the power supply to a load resistor (typically 250 Ohms).
- 3. Connect the opposite side of the load resistor to the return wire per Table 3.
- 4. Connect a DMM across the load resistor per the drawing below. Set the DMM to measure DC Volts.
- 5. Standard cable color and hook ups are provided in the table below. For custom applications, please review your data package for Custom Wiring Diagrams or Control Drawings.

Table 3

Standard Cable Color	Standard Connector Pin Out	Function	Bridge Number
Red	A (13-28 Volt)	13-28 VDC Power	1
Black	D (Return)	Power Return	1
Green	B (13-28 Volt)	13-28 VDC Power	2(*)
White	C (Return)	Power Return	2(*)

^(*) When option is available.

- 6. Power on power supply to provide current to the circuit.
- 7. Measure and record sensor output volts DC under no load condition. Zero load should be 1.00 Vdc +/- 50 mV nominal across a 250 Ohm load resistor.
- 8. Apply a load to the sensor then repeat measurement.
- 9. Using recorded zero load offset from Step 7, compare output to the calibration data (Volts DC vs. Engineering Units)
- 10. See Strainsert Calibration Certificate for comparison.
- 11. Calibration certificates are available on the Strainsert website https://www.strainsert.com/services/online-calibration-certificate-lookup-tool/
- 12. For dual bridge and bi-axial load pin sensors repeat Steps 1 through 11 for bridge 2 if applicable.

2-WIRE LOAD PIN INSULATION RESISTANCE MEASUREMENT (ONLY) (Using a Megohm R Tester)

- 1. Connect all load pin sensor wire leads to the positive side (+) lead of the insulation tester.
- 2. Connect negative (-) insulation tester lead to a secure point on the load pin sensor body.
- 3. Set insulation test voltage to 50V (maximum)
 - Warning: Insulation test voltages that exceed 50 Volts between the sensor wires and/or sensor body can cause permanent damage to the internal strain gages and void the manufacturer's warranty.
- 4. Initiate the test using the insulation meter test button.
- 5. Verify measurement is nominally greater than 5 Giga-ohm's.
- 6. If test value is less than 5 Giga-ohm contact Strainsert.
- 7. For dual bridge and bi-axial load pin sensors, connect bridge 1 load pin sensor wire leads to the positive side (+) lead of the insulation tester. Connect bridge 2 load pin sensor leads to the negative (-) insulation tester leads.
- 8. Repeat Step 4 through Step 6.

Problem	Possible Cause	Possible Solution
Load readings are low or do not	Pin is misaligned to Calibration	Align Pin per the Customer
	Line	Control Drawing
	Pin is not installed correctly and	Rotate the pin about 90
	not deflecting	degrees. Check that groove
increase with applied load		position allows for pin
		deflections
	Damaged or disconnected cable	Inspect cable for damage and
		reconnect/repair as needed.
	Installed upside-down	If the load appears to have
Load readings are saturated or		opposite polarity, rotate the pin
Load readings are saturated or opposite polarity to what is		180 degrees.
expected	Wiring connection swapped	Inspect cable and wiring for
expected		proper connections and
		reconnect, as required.
	Scaling in instrument is	Adjust instrument scaling to
	incorrect	match calibration certificate
	Load Distribution is significantly	Conduct an in-place calibration
Load readings do not match	different from the factory	or proof load to obtain new
calibration data sheet	calibration	scaling per in-place applied load
	Wiring connected improperly	Inspect cable and wiring for
		proper connections and
		reconnect, as required.
	Shift due to overload	Factory repair/replacement
(High Zero Reading) No load	Instrumentation offset or Tare	Investigate software, meter,
readings >5% of full scale	has shifted	display, etc. offset value
reduings > 5/0 of fair scare	Insulation Resistance Short	Return to manufacturer for
		evaluation and repair.
		This is a phenomenon of strain
(Zero Reading Shift) No load		gage circuits, and this initial
readings < 5% full scale	Strain gage shift over time	offset can be zeroed out on
		instrumentation without
		effecting the transducer span
Bridge Resistance readings are	Broken pin, broken connection,	Return to manufacturer for
outside of tolerances	moisture in connector or	evaluation and repair.
	receptacle, open gage circuit	
		Possible temperature gradients
	Heating on one side of	due to non-uniform
- P P P P P P P P P P P P P P P P P P P	transducer	temperature across load pin
		sensor body.
Readings are slightly drifting	Loose or cold solder	Return to manufacturer for
with no load applied	connections inside bridge	evaluation and repair.
	circuit.	
	Internal damage to strain gage circuit.	